Accelerating software development for emerging
ISA extensions with cloud-based FPGAs:
RVYV case study

Marek Pikutal, Marek Szyprowskil

1Samsung R&D Institute Poland

Abstract

The RISC-V Vector Extension (RVV) promises an enhanced performance and power efficiency across various
complex computational tasks. However, the efficient utilization of RVV demands careful consideration of the
optimization approach. This article examines strategies for accelerating this process. Key challenges include
assessing performance differences among algorithmic approaches and overcoming initial hardware constraints.
FireSim provides a comprehensive solution by offering advanced software and hardware simulation capabilities.
Utilizing FireSim, we started the process of enhancing source code with RV'V instructions (called vectorization)
for the pizman project. Our experience outlines the efficacy of a cloud-based FPGA simulation in expediting
software development for emerging ISA extensions. QOverall, FireSim facilitates faster iteration cycles and
informed design decisions, benefiting individual developers and fostering collaboration in remote teams.

Introduction

RISC-V Vector Extension (RVV) is making its way
towards mainstream use. It opens up exciting avenues
for software vectorization on RISC-V, promising im-
proved performance and power efficiency across various
computational tasks ranging from image processing
to AT workloads. However, realizing its full potential
demands careful evaluation and optimization of soft-
ware implementations. This article delves into the
nuances of accelerating software development for new
ISA extensions, with a spotlight on the RVV extension.

Approaches to Vectorization

One of the key challenges in the software RVV vector-
ization is assessing the performance difference between
different algorithmic approaches. Since the ratifica-
tion in 2021, RVV support has gradually come to
the upstream toolchains. Although the development
progress of auto-vectorizers in both GCC and LLVM
is promising, some use cases will always require a
manual approach. Unfortunately, not many reliable
sources give a “golden standard” guide to follow. Two
notable exceptions are RVVRadar[1] and RVV bench-
mark from Camel Coder[2], but both require physical
hardware or manual performance calculations.

Initial Hardware Constraints

At the outset of any project involving emerging ISA
extensions like RVV, there is often a lack of readily
available hardware for testing and validation. While
tools like QEMU provide means to check the valid-

RISC-V Summit Europe, Munich, 24-28th June 202/

ity of the algorithms, they may not accurately reflect
performance characteristics. When comparing scalar
and RVV implementations of the same algorithm, the
recently released QEMU 8.2 performs worse on the lat-
ter. This can lead to suboptimal design choices based
on incomplete or inaccurate performance assessments.

Role of Simulation Tools

Simulation tools play a crucial role in software devel-
opment for emerging ISA extensions. While the Spike
ISA simulator offers robust tracing and debugging
functionality, it lacks in the area of microarchitectural
considerations, which are particularly important for
such a large and complex ISA extension like RVV.

Software HDL simulation tools provide detailed pro-
filing capabilities but suffer from slow performance,
especially for complex designs. Classical FPGA pro-
totyping offers a middle ground but comes with high
initial costs and limited tracing capabilities.

FireSim Simulation

To address these challenges, FireSim|3] offers a com-
prehensive solution. FireSim extends the ChipYard[4]
project with advanced software and hardware simu-
lation capabilities, making it an ideal platform for
developing and testing RISC-V core implementations,
along with external or internal specialized accelerators.

Key Features

FireSim provides several key features tailored to soft-
ware development for emerging ISA extensions:

e Ready-to-use processor and accelerator cores with
pre-built FireMarshal Linux environment.

e TracerV: In-hardware tracing with out-of-band
Flame Graph visualization.

e Support for automatic ILA insertion, assertion
synthesis, and out-of-band performance counters.

e Multicore and multi-SoC setups (so-called supern-
ode simulation) with on-chip network connected
to the host for complex workload scenarios.

Cloud Deployment

One of the notable advantages of FireSim is its support
for cloud deployment, specifically on AWS EC2 F1 in-
stances with Xilinx UltraScale+ VU9P FPGA cards.
This approach offers a low entry barrier on both tech-
nical and financial levels, allowing teams to provision
FPGA resources quickly and pay only for the compute
time used. It also significantly decreases the risk of
the entire operation. There is no need to buy expen-
sive FPGA hardware or license Vivado, as everything
comes in a pay-by-hour manner, which is especially
important for software-focused teams.

This approach might also appeal to multidisciplinary,
remote teams. For example, the hardware team can
develop an SoC on local hardware they already have
on-site (FireSim also supports local targets) and im-
mediately pass the work to a remote software team.
Overall, this can dramatically increase the speed of
evaluation and integration and allow for more dynamic,
end-to-end product development.

RVYV Case Study

We utilized FireSim to develop and optimize the RVV
port for the pizman' project. First, we evaluated read-
ily available RVV-capable cores. We started with the
Tenstorrent Ocelot[5] project (a RISCV-BOOM core
with integrated RVV accelerator), which already had
ChipYard integration. Unfortunately, the implemen-
tation was not directly synthesizable in the FireSim
setting. The second choice was PULP Ara[6], a co-
processor for the CORE-V CVAG6 core. We smoothly
adapted the existing ChipYard CVA6 wrapper and
successfully built and simulated the SoC on AWS node,
running a provided Fedora image by following the com-
prehensive and, importantly, complete documentation
of the aforementioned projects, even though we had
no prior experience with AWS tools.

Development Process

In the initial phase of the pixman vectorization, we
focused on the correctness of the approach and not on

! https://gitlab.freedesktop.org/pixman/pixman

performance. For this we used QEMU environment,
because, even with its suboptimal RVV implemen-
tation, it greatly outperforms any other emulation
solution. Another important benefit is the possibility
of working on a local machine without the need to
provision AWS resources.

Once we worked out the general solution, we started
profiling the code in the FireSim environment. This
way, we could reliably compare between different op-
timizations and with the base scalar implementation.
To do this, we used detailed TracerV reports along
with performance counter measurements. We also
experimented with different microarchitectural config-
urations to see the implications for overall performance,
which allowed us to make informed decisions regarding
algorithmic approaches — optimal in both low- and
high-end configurations.

Conclusions

Our experience with FireSim demonstrates the poten-
tial of the cloud-based FPGA simulation for accelerat-
ing software development for emerging ISA extensions
like RVV. By providing access to cost-effective, scal-
able hardware resources and comprehensive simulation
capabilities, FireSim enables faster iteration cycles and
more informed design decisions. This approach not
only benefits individual developers but also facilitates
collaboration in remote teams, bridging the gap be-
tween hardware and software development efforts.

References

[1] Lucas Klemmer, Manfred Schlaegl, and Daniel Grofe.
“RVVRadar: A Framework for Supporting the Program-
mer in Vectorization for RISC-V”. In: ACM Great Lakes
Symposium on VLSI. 2022.

[2] Camel Coder. “Vectorizing Unicode conversions on real
RISC-V hardware”. In: (2022). URL: https://camel-cdr.
github.io/rvv-bench-results/articles/vector-utf.
html.

[3] Sagar Karandikar et al. “FireSim: FPGA-Accelerated Cycle-
Exact Scale-Out System Simulation in the Public Cloud”.
In: ISCA@50 Retrospective: 1996-2020. Ed. by José F.
Martinez and Lizy K. John. June 2023.

[4] Alon Amid et al. “Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs”. In:
IEEE Micro 40.4 (2020), pp. 10-21. 1ssN: 1937-4143. por:
10.1109/MM.2020.2996616.

[5] Srikanth Arekapudi and Dongjie Xie. “Ocelot: Open Source
Vector Unit”. In: RISC-V Summit North America 2022.
2022. URL: https://github. com/tenstorrent /riscv-
ocelot/.

[6] Matheus Cavalcante et al. “Ara: A 1-GHz+ Scalable and
Energy-Efficient RISC-V Vector Processor With Multipreci-
sion Floating-Point Support in 22-nm FD-SOI”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems 28.2 (2020), pp. 530-543. por: 10.1109/TVLSI.2019.
2950087.

RISC-V Summit Europe, Munich, 24-28th June 202/

https://gitlab.freedesktop.org/pixman/pixman
https://camel-cdr.github.io/rvv-bench-results/articles/vector-utf.html
https://camel-cdr.github.io/rvv-bench-results/articles/vector-utf.html
https://camel-cdr.github.io/rvv-bench-results/articles/vector-utf.html
https://doi.org/10.1109/MM.2020.2996616
https://github.com/tenstorrent/riscv-ocelot/
https://github.com/tenstorrent/riscv-ocelot/
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/TVLSI.2019.2950087

	Introduction
	Approaches to Vectorization
	Initial Hardware Constraints
	Role of Simulation Tools

	FireSim Simulation
	Key Features
	Cloud Deployment

	RVV Case Study
	Development Process

	Conclusions

